operator-valued bases on hilbert spaces

نویسندگان

m. s. asgari

department of mathematics, islamic azad university, central tehran branch, po. code 13185-768, tehran, iran.

چکیده

in this paper we develop a natural generalization of schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. we prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. we prove that the operators of a dual ov-basis are continuous. we also de ne the concepts of bessel, hilbert ov-basis and obtain some characterizations of them. we study orthonormal and riesz ov-bases for hilbert spaces. finally we consider the stability of ov-bases under small perturbations. we generalize a result of paley-wiener [4] to the situation of ov-basis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

g-Bases in Hilbert Spaces

and Applied Analysis 3 Definition 2.6. We say {Λj ∈ B H,Hj }j 1 is g-orthonormal basis for H with respect to {Hj}, if it is g-biorthonormal with itself and for any f ∈ H one has

متن کامل

operator valued series and vector valued multiplier spaces

‎let $x,y$ be normed spaces with $l(x,y)$ the space of continuous‎ ‎linear operators from $x$ into $y$‎. ‎if ${t_{j}}$ is a sequence in $l(x,y)$,‎ ‎the (bounded) multiplier space for the series $sum t_{j}$ is defined to be‎ [ ‎m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}%‎ ‎t_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of linear and topological algebra (jlta)

جلد ۲، شماره ۰۴، صفحات ۲۰۱-۲۱۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023